Gokulakrishnan S

Understanding Spring
Boot: A
Comprehensive
Overview

A detailed exploration of Spring Boot and its
functionalities



https://presentations.ai/

History and Evolution

Developed by Pivotal Software, Spring Boot was created to solve the lntroduction tO Spring

complexity of configuration required by the traditional Spring framework.
Boot

Understanding Spring Boot: A Comprehensive
Overview

Benefits

Provides a standardised approach to configuration, reducing boilerplate code
and improving developer productivity.

Created using {2 presentations @



https://presentations.ai/

Setting Up the Development Environment
A Guide to Establishing Your Spring Boot Setup Efficiently

Install Java Development Kit (JDK)

Ensure you have the latest JDK installed for
optimal performance.

Generate a Basic Application
Utilise Spring Initializr to create a starter template
for your project.

Choose Build Tools

Decide between Maven or Gradle for managing
your project efficiently.

Understand Key Dependencies

Familiarise yourself with essential dependencies
like Spring Boot Starter Web and Data JPA.

Select an Integrated Development
Environment (IDE)

Popular IDEs like Intellid IDEA or Eclipse facilitate
Spring Boot development.

Utilise Online Resources

Courses such as the Spring Boot 2 Udemy
course can greatly assist your setup.

Created using {2 presentationsm


https://presentations.ai/

9l
aqll—
c =
ar
d
Streamlined Setup

Starters integrate
commonly used libraries
and configurations,
facilitating quick project
initiation without manual
setups.

Understanding Spring Boot Starters

A Comprehensive Overview of Starters in Spring Boot

Ak

—

Web Application
Starter

The “spring-boot-starter-
web' is tailored for
developing web
applications, incorporating
everything needed for web
functionalities.

o)

Data Access Starter

The ‘spring-boot-starter-
data-jpa’ simplifies JPA-
based data access,
making database

interactions more efficient.

Time-Saving
Benefits

Utilising starters reduces
the time spent on
managing dependencies,
allowing developers to
focus on core
functionalities.

Consistency Across
Versions

Starters ensure
compatibility among
different Spring Boot
versions, providing a
reliable development

environment.

Created using {2 presentationsm


https://presentations.ai/

Request Mappings

Employ various annotations like
‘@RequestMapping’,
‘@GetMapping’, and
‘@PostMapping’ for precise
routing of HTTP requests.

Building RESTful APIs
with Spring Boot

Explore key features and frameworks for
effective APl development

REST Controllers

Utilise the ‘@RestController’
annotation to effectively define
REST endpoints for your APIs.

Created using {2 presentationsm


https://presentations.ai/

Spring Boot
Configuration and
Profiles

Understanding the essentials of configuration
management in Spring Boot

£

Configuration Files
Utilise “application.properties’ or
“application.yml’ to define
configurations.

Externalised Configurations
Externalise configurations to
effectively manage different

environments.

Overrides
Override default settings using
property files or command-line
arguments.

Created using (B presentations g


https://presentations.ai/

Spring Boot Auto-Configuration

Streamlining Development with Automatic Setup

Reduces Manual Configuration Automatic Bean Configuration

Auto-Configuration in Spring Boot minimizes
the need for manual setup by automatically
configuring beans based on classpath settings.

Spring Boot inspects the classes available on
the classpath, allowing it to configure the
necessary beans without user intervention.

Fine-Tuning Configurations .. .
8 8 Customisation Options
Utilise annotations like

‘@ConditionalOnMissingBean™ and
‘@ConditionalOnClass’ to precisely control the
configuration process.

Developers can customise auto-configuration
by excluding specific configurations or
providing their own implementations.

Created using {2 presentationsm


https://presentations.ai/

Data Persistence with Spring Data JPA

Understanding Spring Boot: A Comprehensive Overview

Configure JPA Use Spring Data CRUD Operations Advanced Queries Sample Application
Repositories
Set up JPA and establish Execute basic CRUD Perform complex database Develop a simple CRUD
connections to databases Leverage Spring Data operations using the operations with JPQL or application using databases
efficiently with minimal repositories to implement ‘JpaRepository” or native SQL queries for like H2 or MySQL to illustrate
configuration required. common data access ‘CrudRepository” interfaces ~ enhanced data manipulation. practical implementation.
patterns effortlessly. for streamlined database

interactions.

Created using {2 presentationsm


https://presentations.ai/

Securing Applications with Spring Security

Key components and preventive measures for robust application security

Authentication and Authorisation Web Security Configuration
Supports various authentication methods including in-memory, JDBC, LDAP, Allows configuration of security constraints using Java configuration for
and custom providers. fine-tuned control.
Cross-Site Request Forgery (CSRF) Protection Custom Authentication Flows
Essential preventive measure to safeguard applications from CSRF attacks. Enables customisation of authentication processes using tailored login

pages for enhanced user experience.

Created using {2 presentationsm


https://presentations.ai/

Unit Testing

Utilise JUnit and Mockito to test individual components effectively.

Integration Testing

Take advantage of Spring Boot's capabilities for testing database
interactions and REST endpoints.

Tools and Libraries Testing Spring Boot

Employ the Spring Boot Test framework, which simplifies test writing Applic ations
using annotations like @SpringBootTest.
A Guide to Effective Testing Strategies with Spring Boot

Bo Fluent Assertions

oooo Use AssertJ to enable fluent assertions for clearer and more readable

ooog) test code.

Practical Example

Demonstrate by writing a test for both a REST endpoint and a service
layer to ensure functionality.

Created using {2 presentations @



https://presentations.ai/

Standalone
Deployment

Run applications using
embedded servers like
Tomcat or Jetty,
simplifying setup.

Deploying Spring Boot Applications

Explore various deployment methods and best practices for Spring Boot.

WAR Deployment

Package applications as
WAR files for traditional
application servers,
ensuring compatibility.

Cloud Deployment

Utilise cloud platforms
such as AWS, Azure, or
Heroku for scalable and

flexible deployment
options.

Containerisation
with Docker

i

Use Docker to containerise

applications, streamlining
deployment across
environments.

Orchestration with
Kubernetes

Implement Kubernetes for

effective orchestration and

management of
microservices.

Created using {2 presentationsm


https://presentations.ai/

Amazon's Case Study

Examine how Amazon utilises
microservices to enhance
scalability and reliability within its
e-commerce platform.

Spring Cloud Utilisation

Leverage Spring Cloud for service
discovery, configuration
management, and resilience in
microservices.

Microservices Architecture
with Spring Boot

A Comprehensive Overview of Core Concepts and
Real-world Applications

Independent, Scalable
Services

Develop services that operate
independently, allowing for
separate deployment and
management.

Created using {2 presentationsm


https://presentations.ai/

Service Discovery

Utilise Netflix Eureka for effective service location within distributed systems.

Configuration Management

Externalise your configuration settings with Spring Cloud Config for better
manageability.

Circuit Breakers

Implement circuit breakers using Hystrix to manage service failures
gracefully.

API Gateway

Employ Spring Cloud Gateway for efficient routing and filtering of requests.

Spring Cloud and
Distributed Systems

A Comprehensive Overview of Spring Cloud
Features and Advanced Concepts

Created using {2 presentations @



https://presentations.ai/

Reactive Programming with Spring WebFlux

A Comprehensive Overview of Building Reactive APIs

Overview of Reactive Streams

Utilises reactive streams with ‘'Mono™ and "Flux' types for efficient data handling.

Creating Reactive REST Controllers

Develop and test REST controllers that operate reactively for improved performance.

WebClient for Reactive Data

Employ WebClient to consume and produce data reactively, enhancing application responsiveness.

Real-time Data Processing

Implement a reactive REST service that processes data streams in real-time for dynamic applications.

Created using {2 presentationsm


https://presentations.ai/

Persisting Data Reactively with Spring Data

Enable reactive data access with Spring Data MongoDB and Cassandra.

Reactive Repository Interfaces

Develop repository interfaces to handle data in a
reactive manner, improving responsiveness.

Efficient Data Retrieval

Implement reactive queries that enable efficient
and non-blocking data retrieval from databases.

Created using {2 presentationsm


https://presentations.ai/

Scalability

Summary and
Key Takeaways

Understanding Spring Boot:
A Comprehensive Overview

Simplification

Flexibility

Created using {2 presentationsm


https://presentations.ai/

Explore Spring Boot
Today

Start building efficient applications with Spring Boot
now!

Created using ﬂ presentations @


https://presentations.ai/

